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Abstract

The paper concerns the Bayesian modelling of traffic intensities measured in
towns and cities. It proposes the use of a normal regressive model of low order,
whose parameters (regression coefficients) are estimated using partial forget-
ting. This method allows to track the time varying parameters and respects the
different variability rate of the absolute term modelling the mean value. The
general theoretical concept of Bayesian modelling and parameter estimation is
complemented with the theory related to the normal model in lieu.

1 Introduction

Statistical modelling of traffic intensities in the urban areas becomes a significant task [6].
Increasing road traffic is accompanied by a wide range of negative factors, influencing the en-
vironment (air pollution), local economy (“opportunity costs”, fuel costs, wear of vehicles and
roads), health and other domains, see, e.g. [7, 13, 15]. Obviously, there appear yet many other
externalities. Couple of solutions to the issue appeared in the last years, e.g.

• Junction improvements, e.g., roundabout junctions which have become popular in the
Czech Republic in the past decade.

• Reversible lanes with direction switching, separate lanes for specific users like local mass
transport systems, etc.

• Urban planning with respect to the local traffic needs.

• Intelligent traffic systems (ITS) like variable traffic signs, high occupancy toll lanes, cordon
zones with congestion pricing, variable speed limits, collision avoidance systems, dynamic
light systems etc. [14].

Many of these modern intelligent systems use statistical modelling of intensities (and other
variables). However, as regards this type of modelling, we can use complex models demanding
special technical equipment (computers, information channels, etc.) on one hand or to use
simpler models at the cost of limitations of the overall system performance on the other hand.

Modelling of traffic intensities may be evaluated with the autoregressive models of low order,
but their basic forms can fail, simply due to the time-varying mean value of the signal (cf. Fig.
1). While, at night, the roads are almost empty, in the morning the intensity rapidly grows to
reach its first daily peak. The second peak occurs in the afternoon, then the intensity usually
slowly decreases. To solve this non-stationarity, we employ the absolute term and model the
mean value with it.

Specific notation: ′ denotes transposition, f(a|b) is a conditional probability density function
in which a random variable (and its realization) a is conditioned by a random variable b (or its
realization). E [·] denotes mean value of the argument. Time t = 1, 2, . . . is discrete. x∗ denotes
a set of x values (hypotheses, functions. . . ). Furthermore, let us introduce the notation

f(x = xt|y = yt,d(τ)) ≡ ft|τf(x|y).



Figure 1: A sample of course of traffic intensities during 1 day

2 Normal regressive model

For the sake of convenience, we employ the n-th order autoregressive model AR(n) in the form

yt =

n∑
i=1

aiyt−i + kt + et, t = 1, 2, . . . , (1)

where yt denotes traffic intensity measured at time instant t, ai are regression coefficients and kt
denotes the absolute term of the model. Its purpose is to model the mean value of the signal. The
term et stands for the normally distributed white noise with zero mean and constant variance
σ2 [12],

et ∼ N (0, σ2). (2)

Under the assumptions on noise whiteness, the regressive model (1) may be expressed with
a probability density function (pdf) [8]

ft|t−1(y|Θ) ∼ N (ψ′tθt, σ
2) (3)

where m = n + 2,ψt ∈ Rm and θt ∈ Rm denote a column regression vector and a vector of
regression parameters,

ψt = (yt, . . . , yt−n, 1)′ and θt = (a1,t, . . . , an,t, kt)
′.

The term Θt is a set of model parameters, which in the case of the normal model (3) is Θt =
{θt, σ2}. In this work, we focus especially on the regression coefficients aggregated in θt. Under
general conditions, it is possible to avoid using the absolute term kt, however, it will play a
fundamental role in the further reading.

2.1 Estimation

Suppose that the model (3) is known up to a set of parameters Θt, whose elements are to be
estimated. The Bayesian paradigm, considering the parameters to be random variables, allows
us to represent their distribution with a pdf

ft|t−1(Θ) ≡ f(Θt|d(t− 1)). (4)



Apparently, their distribution is conditionally dependent on the previous measurements, which
are the only source of information available to the model.1 Estimation of these parameters has
two steps:

Data update: incorporating new gathered data into the distribution of parameters through
the Bayes’ theorem [8]:

ft|t(Θ) =
ft|t−1(y|Θ)ft|t−1(Θ)∫

Θ∗ ft|t−1(y|Θ)ft|t−1(Θt)dΘ
(5)

Time update: reflecting the (potential) time-variability of parameters in Θt+1 [8]:

ft+1|t(Θ) =

∫
Θ∗

f(Θt+1|Θt,d(t))ft|t−1(Θ)dΘ. (6)

Let us first analyse the time update procedure. If the parameters are constant, then the normal
model f(Θt+1|Θt,d(t)) is identical with the Dirac distribution. In this case, the integral in (6)
represents an identity functional and

ft+1|t(Θ) = ft|t(Θ).

The consequences are obvious: (i) the time update may be omitted if the parameters are con-
stant, and (ii) under the normality of the model and under the quadratic criterion, the constant
parameters’ point estimates are identical to the frequentists’ ones obtained from the static linear
regression.

The recursive Bayesian estimation exploits the fact, that given a conjugate prior distribution,
the posterior is of the same type. The normal distribution, describing the model (3) is a member
of the exponential family; it can be proved, that any member of this family, meeting certain
conditions, possesses a conjugate counterpart. One of these conditions is the existence of a
sufficient statistics [3], allowing to avoid working with a large set of data by their transformation
into a set of smaller non-increasing dimension

f(a|d(t)) = f(a|St). (7)

The single-output normal model (3) is conjugated with the Normal inverse-gamma N iG(V , ν)
prior. Its sufficient statistics are the number of degrees of freedom ν ∈ R, sometimes referred to
as the counter, and the extended information matrix V ∈ Rm×m. The data update rules (5) for
these two statistics are [12]

Vt|t = Vt|t−1 +

(
yt
ψt

)(
yt
ψt

)′
(8)

νt|t = νt|t−1 + 1 (9)

It may be proven [12], that the estimator of regression coefficients θt = (a1, . . . , an, kt)
′ is

θ̂t =


ât;1

...
ân
k̂t

 =

V21
...

Vm1


′V22 . . . V2m

...
. . .

...
Vm2 . . . Vmm


−1∣∣∣∣∣∣∣

t|t

. (10)

This relation is equivalent to the recursive least-squares (RLS).

The direct use of statistics V can lead to numerical difficulties due to the inversion operation.
Therefore, we prefer to use its factorized representation, characterizing alternative definition of

1We abstract from the expert information.



the N iG pdf. The N iG pdf with the decomposition V = L′DL, where L is a unit lower
triangular matrix and D is a diagonal matrix, has the form [8]

GiW(L,D, ν) ≡ σ−(ν+n+2)

I(L,D, ν)
× exp

{
−1

2σ2

[
(θ − θ̂)′C−1(θ − θ̂) +Dy

]}
.

With the generalization of L and D to block matrices of corresponding dimensions (Dy scalar)

L =

[
1
Lyψ Lψ

]
, D =

[
Dy

Dψ

]
θ̂ ≡ L−1ψ Lyψ is the least-squares (LS) estimate of θ,

C ≡ L−1ψ D
−1
ψ (L−1ψ )′ ∈ Rn×n is the LS covariance of θ̂,

Dy ∈ R+ is the least squares remainder,

I stands for the normalization integral

I(L,D, ν) ≡ Γ(0.5ν)

√
2ν(2π)n

Dν
y |Dψ|

. (11)

More on properties of the distribution can be found in related literature, e.g., [8].

2.2 Prediction

Bayesian prediction with a parametric model follows from the rule

ft+1|t(y) =

∫
Θ∗

ft+1|t(y|Θ)ft|t(Θ)dΘ =
It+1

It
. (12)

Under the assumption of model normality and under the quadratic criterion∑
t∈t∗

(yt −ψ′tθ̂t)2 → min

we may use the point estimates of a1;t, . . . , an;t and kt to obtain the prediction of yt+1. Generally,
the knowledge of regression vector for any t allows us to evaluate the predictions relevant to this
index. This is equivalent to multiple steps-ahead prediction, or smoothing if we regress some
intermittent value.

3 Estimation with forgetting

It has already been mentioned in Section 2.1 that the potential parameters time variability
often has to be taken into account. If we deal with traffic intensities, the time update becomes
very important. The intensities vary during day and week, which can be expressed as the time
variation of the mean value. Recall the model (1) and remind, that the mean value is modelled
with the absolute term k. Hence the goal is to release the absolute term and let it vary with the
true intensities.

If we further analyse the situation, the lack of knowledge of parameters’ time evolution
becomes evident. The only known data are the past intensity measurements and there is no
other clue. In this case, we employ forgetting in place of the time update (6). Instead of explicit
modelling of parameters’ evolution in time, or finite data window modelling, we release the
parameters by gradual discarding the old and potentially outdated information. There exist
several forgetting methods, e.g., directional forgetting [10] or linear forgetting [11], however, the



most popular yet the most basic one is the exponential forgetting [5, 12]. For the Bayesian
models, it is defined as follows

ft+1|t(Θ) =
[
ft|t(Θ)

]α
; α ∈ (0, 1).

The term α stands for the forgetting factor; it is usually greater than 0.95. In the normal model
(3), whose prior pdf is of normal inverse-gamma type, the forgetting demonstrates itself in the
form

Vt+1|t = αVt|t = αL′t|tDt|tLt|t (13)

νt+1|t = ανt|t. (14)

3.1 Hypotheses of partial forgetting

The exponential forgetting is doomed to fail if used for modelling of dynamic systems with
different variability of parameters, which becomes evident if we summarize the properties of
traffic intensities:

1. In certain time intervals, e.g., during nights, probably no parameter varies.

2. In other time intervals all parameters vary slowly.

3. Generally, during the daytime, the mean value varies significantly.

Let these three cases label as hypotheses H0, H1 and H2 and suppose, that at each time in-
stant, the regression coefficients obey some true distribution gt+1|t(θ). Now, we formalize the
hypotheses as follows:

H0 : E
[
gt+1|t(θ)|θ,d(t), H0

]
= ft|t(θ)

H1 : E
[
gt+1|t(θ)|θ,d(t), H1

]
=
[
ft|t(θ)

]α
(15)

H2 : E
[
gt+1|t(θ)|θ,d(t), H2

]
= ft|t(a1, . . . , an|, k)

[
ft|t(k)

]α
where again α ∈ (0, 1) and where E

[
gt+1|t(θ)|θ,d(t), Hi

]
has the meaning of a point estimate of

the true but unknown pdf. It expresses our presumption of the true pdf under the knowledge of
data d(t), parameters θt+1 and the true hypothesis Hi at time t. The meaning of H2 is simple
– we decompose the pdf ft|t(θ) using the chain rule and forget only the marginal pdf related
to the absolute term. Each of the three hypotheses characterizes one specific case, but any of
them can appear during the modelling. The conceptually correct solution is to use the mixture
in which each pdf is weighted by its non-negative probability pi,t|t ≤ 1

E
[
gt+1|t(θ)|θ,d(t)

]
=

2∑
i=0

pi,t+1|tE
[
gt+1|t(θ)|θ,d(t), Hi

]
,

2∑
i=0

= 1. (16)

3.2 Determination of probabilities

The probabilities pi;t|t quantify the uncertainty of each hypothesis at the particular time instant.
If we want to recursively tune them, the data update and time update are necessary.

Data update tunes the probabilities with respect to the predictive abilities of the hypotheses,

pi;t|t ∝ pi;t|t−1
∫
Θ∗

ft|t−1(y|Θ)E
[
ft|t−1(Θ)

∣∣∣Θ, Hi,d(t)
]

dΘ. (17)

Time update suppresses the risk of degradation of the weights to a singular case, when right
one hypothesis dominates with probability close to 1, while the others are close to zero. We can
use the exponential forgetting with factor α ∈ (0, 1), i.e.

pi;t+1|t ∝ pαi;t|t, (18)



3.3 Approximation

The mixture-based modelling requires a complex treatment, which discards its use for our pur-
pose. To avoid it, we prefer to approximate the mixture (16) by a single pdf, using the Kullback-
Leibler divergence [9] as a minimization criterion.

The Kullback-Leibler divergence of two pdfs f, g of a random variable X, acting on a common
set X∗, holds the following form:

KL(f ||g) =

∫
X∗

f(x) ln
f(x)

g(x)
dx. (19)

It can be shown, that the Kullback-Leibler divergence is a non-negative functional with equality
for f = g almost everywhere [1].

We search the argument minimizing the Kullback-Leibler divergence,

g̃t+1|t(Θ) = arg min
g∈g?

t+1|t

E
[
KL
(
gt+1|t||g̃t+1|t

) ∣∣∣Θ,d(t)
]
.

The pdf g̃t+1|t represents the best approximation of the mixture (16) and may be used for further
modelling.

The Kullback-Leibler divergence of two N iG pdfs has the following form [8]:

KL(g||g̃) = ln
Γ(0.5ν̃)

Γ(0.5ν)
− 0.5 ln |CC̃−1|+ 0.5ν̃ ln

Dy

D̃y

+ 0.5(ν − ν̃)Υ(0.5ν)− 0.5n− 0.5ν + 0.5Tr
(
CC̃−1

)
+ 0.5

ν

Dy

[(
θ̂ − ˆ̃

θ
)′
C̃−1

(
θ̂ − ˆ̃

θ
)

+ D̃y

]
, (20)

where Υ(·) denotes the digamma function, i.e., the first logarithmic derivative of the gamma
function Γ(·).

In our application, we substitute the mixture obtained in (16) for gt+1|t and search for its
best approximation g̃t+1|t by minimization of (20) with respect to the parameters of the N iG
distribution. These parameters are:

ˆ̃
θt+1|t=

(
2∑
i=0

λi;t+1|t
νi;t|t

Dyi;t|t

)−1( 2∑
i=0

λi;t+1|t
νi;t|t

Dyi;t|t
θ̂i;t|t

)

D̃y;t+1|t = ν̃i;t|t

(
2∑
i=0

λi;t+1|t
νi;t|t

Dyi;t|t

)−1

C̃t+t|t =
2∑
i=0

λi;t+1|t
νi;t|t

Dyi;t|t
×
[(
θ̂i;t|t −

ˆ̃
θi;t|t

)(
θ̂i;t|t −

ˆ̃
θi;t|t

)′]
+

2∑
i=0

λi;t+1|tCi;t|t

ν̃t+1|t =
1 +

√
1 + 4

3(A− ln 2)

2(A− ln 2)

A = ln

(
2∑
i=0

λi;t+1|t
νi;t|t

Dyi;t|t

)
+

2∑
i=0

λi;t+1|t lnDyi;t|t −
2∑
i=0

λi;t+1|t Υ(0.5νi;t|t).

The proof can be found in [2]. A normal inverse-gamma distribution with these parameters may
be used as the best approximation of the true parameters pdf in (3).

4 Practical implementation in Matlab

We use the Mixtools library developed at the Institute of Information Theory and Automation,
Academy of Sciences of the Czech Republic. This library allows to use regressive models and



their mixtures in Matlab. Here, we demonstrate the modelling of traffic intensities depicted
in the Fig. 1. We use autoregressive model of first order with an absolute term, with non-
informative prior with parameters diagV0 = (0.1, 0.01, 0.01) and ν0 = 10. The forgetting factor
α for H1 is 0.95, for H2 it is 0.9. The probabilities of hypotheses are flattened with α = 0.99.
The course of parameter estimates is depicted in the Figure 2. Evidently, the absolute term
follows quite well the variations of the traffic intensity mean value. The Fig. 3 shows the course
when the estimation was evaluated without forgetting. The one-step ahead prediction errors
(partial forgetting) have mean -0.017, median 0.002 and standard deviation 3.673.

Figure 2: Evolution of parameter estimates (partial forgetting).

5 Conclusions

The paper described the Bayesian modelling of traffic intensities with low-order normal autore-
gressive models. As the parameters (regression coefficients) are supposed to vary with different
rates, the use of partial forgetting method was proposed. The method was briefly described and
the results were demonstrated in an example.
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